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Mathematical Modeling of Facilitated Liquid Membrane 
Transport Systems Containing lonically 
Charged Species 

J. P. LEIBER, R D. NOBLE, J. D. WAY, and B. R BATEMAN 
NATIONAL BUREAU OF STANDARDS 
CENTER FOR CHEMICAL ENGINEERING 773.1 
BOULDER COLORADO 80303 

Abstract 

A numerical model is presented which solves the transient nonlinear system of 
partial differential equations governing the facilitated transport of ionically charged 
species through a liquid membrane. The mathematical model is derived in 
dimensionless form and solved numerically. Facilitation factors and electrical 
potentials across the membrane are computed and compared to experimental 
results. This model is useful in predicting transient concentration, flux, and electrical 
potential gradients provided that the values of the required physical constants are 
known. It was noticed that transient facilitation factors are not affected by the 
transient electrical potential buildup, which indicates that both the pure diffusion 
and the faciltated transport of permeate are affected equally by the electrical effects 
of the ionically charged species. 

INTRODUCTION 

Developing liquid membrane transport systems consists of choosing a 
liquid which is selective for a particular species. In the absence of reactions, 
charged particles, and fluid movement, the permeate is transported by 
diffusion through the membrane. The permeate specie must meet a set of 
solubility and chemical equilibria criteria favoring only that substance. 
Purely diffusive transport is generally slow and unproductive except in a 
few special cases. The method of facilitated transport using chemical 
complexation has been used to improve the performance of liquid 
membranes beyond the level attainable by pure diffusion. 

Copyright @ 1985 by Marcel Dekker, Inc. 
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232 LEIEER ET AL. 

In facilitated transport the liquid membrane contains a carrier substance 
which reacts reversibly with the permeate to form a complex. The complex 
will in turn diffuse in addition to the permeate, thereby augmenting the flux 
of permeate through the membrane. Decomplexing of the carrier from the 
permeate occurs due to pressure and/or concentration gradients or by 
applying an agent which has a greater affinity for the permeate than the 
carrier. Typical facilitated transport liquid membranes are a mixture of two 
or more species, one of which is the carrier and the others solvents and 
nonparticipating species. It is common in gas separations that these carrier 
species are ions formed from the dissociation of a salt in solution. 

Electrolytic liquid membranes can utilize one more transport mechanism, 
that of ion migration due to electrical forces. When charged particles are 
unevenly distributed, electric fields are present and movement of the 
charged particles induces current. The forces resulting from the presence of 
ions in the system will alter the mass transport and can either augment or 
retard the total permeate flux. In any case, additional effects can be 
externally induced by placing the system in an electric field. This is referred 
to as forced facilitation. 

An early discussion of ionic transport mechanisms was given by Shean 
and Sollner (1) and induced the electric field effects in the transport 
equations. Further observations were noted by Ward (2) when facilitated 
transport was induced by an electric field. Bdzil et al. (3) measured the 
experimental quantities and presented a detailed mathematical description 
of the physical phenomena. The mathematical results reproduced those 
from the laboratory insofar as the electrical potential buildup was 
concerned. Later, Moore and Schecter (4)  performed a similar study with 
different chemical species and reported favorable results. It was demon- 
stated repeatedly that the electrical potential rapidly vanes with time due to 
the concentration changes of the ions. 

De Koning, Stroeve, and Meldon (5) investigated these effects with 
carbon dioxide. Their mathematical treatment was much more involved 
than previous work, but reduced to equivalent expressions and produced 
satisfactory results, 

A textbook addendum was presented by Krishna and Standart (6) which 
discussed in detail the effects of multicomponent mass transfer interactions. 
The primary emphasis was on diffusion only, with convective transport 
being the only other effect considered. Presumably, the value of the binary 
diffusivities can account for the significant interactions and any others can 
be neglected. A large portion of the addendum dealt with approximations, 
analytical solutions, and applications. 

Goddard (7) presented a detailed vector-tensor analysis of the electric 
field equations associated with mass transport of ions. In addition to the 
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FACILITATED LIQUID MEMBRANE TRANSPORT SYSTEMS 233 

overall transport, the effects of electrical boundary layers were also 
described and consideration of these boundary layers was put into 
perspective. With the assumption that layers of electrical charges at the 
boundaries are minimized by fluid velocities and well-chosen supporting 
structure material, these electrical boundary layer effects were ignored in 
this model. 

Another electrical effect was investigated by Desai and Stroeve (8) using 
a monolayer of oleic acid sandwiched between water and mercury. They 
graphically showed how capacitance and current changed as the electrical 
potential across the monolayer was vaned. It can be inferred that since 
current flow and ionic flux are proportional, and since a liquid monolayer is 
a good membrane approximation, the flux of ions across a membrane can 
be related by similar changes in the electrical potential. The structure of 
their oleic acid monolayer was also predicted using electrical measure- 
ments. 

Popov and Timofeeva (9) investigated the effects of an alternating 
electric field on the facilitated transport mechanism. Their conclusion was 
that any alternating current will set up longitudinal waves which will 
augment mass transport by convection and by enhancement of permeation 
at the boundaries of the membrane by agitation. This method of “forced 
facilitation” could be implemented in direct current applications using 
pulsating fields. 

Meldon, Stroeve, and Gregiore (1 0) researched the electrical potential 
differences in the carbon dioxide-hemoglobin system and indicated that the 
alkalinity of the electrolyte was directly related to the electrical potential 
drop across the membrane. They found that the transport of carbon 
dioxide is promoted by the electrostatic interactions in the highly alkaline 
systems and retarded in systems of lower alkalinities. 

Ruckenstein and Sasidhar (22) made a study of the transient behavior of 
the nitric oxide-ferrous ion system used by Ward (2). Their data showed a 
transient peak in the electrical potential across the membrane. A maximum 
value is attained before steady-state is achieved. Their theory is that the 
maximum potential occurs at the time the permeate goes through a 
transition from “seeing” the membrane as semi-infinite to actual thick- 
ness. Data gathered from their paper comprise the basis for one evaluation 
of the model presented here. 

Forced facilitation is discussed in some detail by Ivory (12) wherein he 
compares electrically enhanced transport to the same system without the 
induced field. He concluded that transport can be accelerated and 
promoted using an externally applied electric field. Ruckenstein and 
Sasidhar (13) then presented a different mathematical and numerical 
scheme for the system they used previously. This scheme incorporated a 
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234 LEIBER ET AL. 

relaxation technique, and the solution was in agreement with their 
laboratory results. 

The objective of this study is to incorporate the electric field effect terms 
into the model presented by Folkner and Noble (14). Evaluation of the 
model is accomplished using the data from Folkner and Noble (14) and 
Ruckenstein and Sasidhar (11). Comparison of model results to experi- 
mental data for NO separation using the Fe2+ as the carrier in formamide 
solvent is studied. Finally, various applications of the model are demon- 
strated. 

PHYSICAL AND MATHEMATICAL DESCRIPTION 

The physical configuration of a typical liquid-membrane transport 
system is shown in Fig. 1. The system is considered to be infinite in the y 
and z rectangular coordinates so that end effects are ignored. The permeate 
A enters the control volume at x = 0 and may react reversibly with the 
carrier B to form the complex AB. 

Here, kl and k2 represent the forward and reverse reaction rate constants 
respectively; z is the ionic charge of the species, The permeate and complex 
simultaneously move through the membrane by diffusion and ion migration 
to the other semipermeable boundary at x = L, where decomplexation can 
occur, returning the carrier to its original state. Note that reaction takes 
place throughout the membrane. For general systems containing many 
species, the complexation is 

where [i] represents the label associated with component i. Here, com- 
ponents 1,2, and 3 are A, B, and AB, respectively. Components 4 through 
n are the other species present in the control volume which do not react with 
the permeate, but cannot be neglected if they carry an electrical charge. vi is 
the stoichiometric coefficient for the ith species. 

The rate of production for the ith species then is 
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Impermeable Boundries 

MEMBRANE 
Inactive Solvent 

PERMEATE PERMEATE 
RICH 
FLUID 

(such as secondary 
ontrol Volume 

FIG. 1.  Typical liquid membrane system. 

where Ci is the concentration. The stoichiometric coefficients are deter- 
mined directly from the reaction equation and compensate for the fact that 
moles are not conserved. To describe the molar flux relative to a stationary 
observer, the Nernst-Planck equation is used: 

Ni = UC, - P DiVCi - -ziDiCIV+ 
RT 

(flux due to (flux due to (flux due to (4) 

where u is the fluid velocity vector, Di is the diffusivity of the ith species, p is 
Faraday’s constant, R is the gas constant, T is the absolute temperature, 
and 4 is the electrical potential. The continuity equation for each species i in 
the control volume is 

convection) diffusion) electric field) 

a Ci 
at  

+ V Ni = Ri ( 5 )  
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236 LEIBER ET AL. 

TABLE 1 
Dimensionless Variables and Parameters 

= dimensionless concentration 
* ci ci = - 

A0 

cAO = permeate concentration in liquid membrane which would be in 
equilibrium with permeate concentration in permeate-rich fluid 

P 
+* = E+ 

= dimensionless diffusivity 

= dimensionless electrical potential 

= dimensionless time 

(x - x1) 
X =  = dimensionless position 

L 

= dimensionless radius of curvature 
XI 

L 
b = -  

= inverse DamkGhler number 
D A B  E=- 
k2L2 

= dimensionless reaction equilibrium constant 
kl 
k2 

K = - C A o  

DAB CT 

D A  CAO 
a = ~ - = mobility ratio (ratio of mobility of carrier to mobility of permeate) 

CT = initial carrier concentration 

DAO k l  

DA k 2  
A = -  - C T  = aK 

kL 
Sh = - 

DA 
= Sherwood number for permeate mass transfer 

k = mass transfer coefficient based on concentration driving force (see Eq. 
21) 
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FACILITATED LIQUID MEMBRANE TRANSPORT SYSTEMS 237 

1 

Assuming that Di is constant and 0-0 so that convection effects are 
neglected, substitution of Eqs. (3) and (4) into ( 5 )  yields 

a Ci P 
a t  = DiV'C, + R T Z @ $ { V ~ +  + v,(klCACB - kzCAJ (6) 

For the single-dimensional case, the Laplacian operator V2 can be given 
by 

atX = 1 

where a is the geometry coefficient and x is the coordinate in the direction 
of mass transfer. (Note that x is the radial coordinate for cylindrical and 
spherical geometries.) For flat, cylindrical, and spherical geometries, a is 0, 
1, and 2, respectively. 

By redefining the variables in dimensionless form, as given in Table 1 ,  Eq. 
(6), after some rearrangement, leads to 

a z  

X + b  

which leads to the following equation for pure diffusion: 

The facilitation factor I; is defined as the overall flux of the permeate at the 
effluxing boundary divided by the flux due only to diffusion: 
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238 LEIBER ET AL. 

In order to expedite the calculation of the facilitation factor, it was 
necessary to introduce the dimensionless parameter A into Eq. (8) for the 
case where i is the permeate A. 

where C ,  is the total initial carrier concentration, defined as 

and 

c; = c;B + CI: 

which lets the facilitation factor be computed as 

I;= 

A = O , X =  1 

There are several expressions one can use for +*, the local electrical 
potential. The two considered here are Poisson's equation [Chapman (15)l 
which is an alternate expression of Gauss' law 

where f3 is Faraday's constant, 6 is a dielectric constant of the membrane, 
and the local electroneutrality assumption equation 

i: zici = 0 
i = I  

which is valid for membranes thicker than 100 A according to Ruckenstein 
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239 FACILITATED LIQUID MEMBRANE TRANSPORT SYSTEMS 

(11) and for electrical double layers and boundary layers of electrical 
charges according to Chapman (15). 

Multiplying both sides of Eq. (8) by zj and summing over all species leads 
to 

because C ziRi = 0 for species and charge continuity in the reaction. 
Applying Eq. (1 5) to Eq. (1 6) and rearranging gives 

and when reduced by integration becomes 

For flat geometries the equation is 

$.pi- * ac: 
i = I  ax -- _ -  a+* 

ax 
i = I  

When q* is eliminated from Eq. (17c), the following relationship is 
obtained: 
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240 LEIBER ET AL. 

i= 1 ax 
ax * 

iZj 

(1 7 4  -- _ -  a cp* 

i= 1 
i#j 

Since the right sides of Eqs. (17c) and (17d) are of the form (u/v), the 
Laplacian in Eq. (8) can be computed using the quotient rule of derivatives. 
Equations (1 7a)-( 17d) can be modified for external electric fields if the 
forcing function is known. 

Since each equation is first order in time and second order in space, each 
equation requires one initial condition and two boundary conditions. 

Initial Condition 

Boundary Conditions 

Case I 

A tX = 0 

Concentration specified for A 

C:= Cz = 1 

ac: ac: 
ax - ax ---- - 0  

a c; ~- ax - 0, for i = 4, . . . , n 

AtX = 1 C : =  C: = 0 

ac: ac; 
ax - ax - 0  
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FACILITATED LIQUID MEMBRANE TRANSPORT SYSTEMS 241 

ac, ac:, 
ax - ax __-___- - 0  

a Ci 
ax -0, ( 2 0 4  -- fori  = 4, ..., n 

Since the liquid membrane is impermeable to all but species 1, the flux of 
species 2 through n will always be zero at the surface boundaries where 
X =  0 andX 

Case I1 

AtX = 0 

AtX = 1 

= 1. 

Flux specified for A 

---- ",* - Sh(C2 - rnCa,,) I 

a'' 
ax - ax 
a c; 
ax - O ,  

ac: ac: 
ax - ax 
a c: 
ax - 0, 

fori  = 2, ..., n -- 

~ - _ _ -  - - Sh(C,* - mCz,,)  

__- for i = 2, . . . , n 

where rn is the ratio of gas solubility at current temperature and pressure to 
the ideal molar density of the bulk feed gas, and CE,i is the dimensionless 
concentration of the permeate in the bulk feed gas at X = i. 

The solution procedure used PDECOL, a software package developed 
by Madson and Sincovec (16). The solution wiJ take the form of arrays 
giving the value of each dependent variable, C,, at each spatial point for 
every increment of time specified. Note that the dimensionless equations 
require no empirical (adjustable) parameters. The soluti2n to the above 
equations was performed gumerically to generate the Ci and the partial 
spatial derivatives of the Ci (i.e., the fluxes) as functions of time in discreet 
time steps. 

The facilitation factor defined by Eq. (1 3) is useful in demonstrating the 
effectiveness of the carrier as a complexing agent versus the purely diffusive 
characteristics of the same system. If several carriers are available, the best 
choice could be easily determined by comparing facilitation factors. 
Another quantity of interest is the total electrical potential gradient across 
the membrane, defined as 
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242 LEIBER ET AL. 

By looking at this value, one can observe the charged particle effects on the 
mass transport and determine whether the effects are helpful or detrimental 
to the separation process. Actual values of compensating external fields can 
be suggested and added to the system to overcome any unwanted effects. 
By combining the resulting concentration and flux profiles, facilitation 
factors, and potential gradients, one can propose certain standards in 
scaling up laboratory prototypes to industrial applications. 

MODEL EVALUATION 

Model evaluations were made with the assumption that DAB = DB and 
that there were negligible contributions from any species other than A, B, 
and AB. Noting that zA = 0 for an undissociated gas and substituting the 
values for species AB into those subscriptedj, Eq. (17d) reduces to 

Substitution of Eq. (23) into Eqs. (8) and (11) results in the following 
simplified equations: 
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FACILITATED LIQUID MEMBRANE TRANSPORT SYSTEMS 243 

From Eq. (12b) one can see that 

Substitution of Eq. (25) into (24b) and into (24c) results in the same 
equation, since DE = DZB and vB = - 1 and vAB = + 1.  Thus, what was three 
equations now becomes the following two: 

and the value of A V reduces to 

where q is the number of electrons liberated between membrane species. 
After Eqs. (26) and (27) were incorporated into the computer programs, 

testing commenced with values of K, E, and A presented by Folkner and 
Noble (14) for uncharged systems. The values were compared and 
complete agreement was observed as shown in Fig. 2. 

A second test was made using the data provided by Ruckenstein and 
Sasidhar (11). A transient plot of AVreproduced their results exactly and is 
shown in Fig. 3. 

MODEL APPLICATION 

Upon successful completion of the model testing, experimental data were 
analyzed [Bateman and Way (17)l. The values of k ,  and k,, the forward 
and reverse reaction rate constants, were unknown. The value of DAB was 
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0 15 30 45 60 75 90 105 120 135 

r 
Transient Facilitation Factors vs Dimensionless Time using data from Folkner 
and Noble (1983). Input values of Delta are given in the legend. Other 
Input values are: 
a=O, bz.1, T=25OC, q = l ,  0; = 1.0, O;,=Oi =0.1, Z ~ = z s = Z ~ g = o ,  cioz1, 
c,,=c;=1, V , = - l ,  u,=+1, x=1.0, E=1.0  

FIG. 2. Evaluation of model using neutral species. 

Electrical Potential Drop vs Dimensionless Time using data given in 
Ruckenstein and Sasidhar (1982). Input values of Epsilon are given 
in the legend. The other input values are: 
a=O, b=0.1, T=23OC, q = l ,  0; =1.0, D;,=D; =0.13245, zA=O, 
z6 =zAB = +2, C;, =I,  C& =G; ~95.42, V ,  = -1, V g  = + 1, x ~2.08028, 
A =26.291325 

FIG. 3. Evaluation of model using ionically charged species. 
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TABLE 2 
Laboratory Data and Experimentally Determined Physical Properties [ 171 

T =  25°C 
P = 84.0 kPa 
A =  NO 
B =  Fez+ 

Solvent = HCONH2 
AB = F e N 0 2 +  

C, = 3.0 X mol/cm3 

S = 2.5 X mol/cm3 
L = 0.0304 cm 

DA = 3.16 X lo-’ cmz/s 

The following were estimated: 

DAB = 1.23 X lo-’ cm2/s 
Keq = 1.1 X l o 5  cm3/mol 

Y = 0.6 1 5  = porosity 
k2 = 1.4 X lo2 S-’ 

yAO Fsteady-state - 
0.2 5.5 
0.4 3.8 
0.6 3.0 
0.8 2.5 
1 .o 2.2 

assumed to be equal to DB, which was reported as 1.23 X cmz/s, an 
order of magnitude different from the value indicated by Ward (2) of 
2.0 X cm2/s. The first application of this model did not reproduce the 
results found in the laboratory. Using k, = 9.0 X s-l, Keg = 1.1 X lo’ 
cm3/mol, and the values shown in Table 2, this model gave F (with 
YAo = 0.2) = 1.72 and I: (with YAo = 1.0) = 1.65. YAo is the mole fraction 
of permeate in the feed. With the uncertainty of the above parameters, it 
was decided to search for the combination of values which gave results 
similar to those determined experimentally. 

The search procedure began by holding the value of A constant and 
selecting the other parameters at random. The selection of K ,  determined 
the values of K corresponding to the initial bulk concentration of the 
permeate in the feed gas, as given by 

K = Y A O  Keq S 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
2
4
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



TA
BL

E 
3 

M
od

el
 P

ar
am

et
er

s U
se

d 
in 

Fi
rs

t S
ea

rc
h 

w
ith

 A
 =

 2
5 

K 
(d

im
en

sio
nl

es
s)

 

8.
32

 x
 1

05
 

0.
1 

0.
41

6 
0.

83
2 

1.
24

8 
1.

66
4 

2.
08

 
2.

08
 X

 l
o6

 
0.

04
 

1.
04

 
2.

08
 

3.
12

 
4.

16
 

5.
2 

2.
5 

x 
10

6 
0.

03
33

 
1.

25
 

2.
5 

3.
75

 
5.

0 
6.

25
 

3.
0 

X
 l

o6
 

0.
02

78
 

1.
5 

3.
0 

4.
5 

6.
0 

7.
5 

4.
0 

X
 l

o6
 

0.
02

08
3 

2 
4 

6 
8 

10
 

rn
 

-4 9
 

r
 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
2
4
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



FACILITATED LIQUID MEMBRANE TRANSPORT SYSTEMS 247 

1 .o 1 1 I 1 1 I I 1 1 1 1 - -. - 
c Keq (cclmol) - 

4.00x 106 
3.00xlo6 - - - .5 c - 

c 2.50Xlo6 -.-*- + 

c - 
2.08x lo6 - -- - -- 
8.32~10~ ----- 

i 
i - 

0 0  

- 2 -  / 
- - 0 / * *  ././*/ E. .1 ,i 0- - - - 

0 - 
c - -- 0.- /-/ 

.05 - /./* - - ---- - -- 
c - 

.02 c - 

.01 : 1 I 1 I I I I I 1 1 1 

where Keq is the reaction equilibrium constant in cm3/mol, and S is the 
solubility of the permeate in the liquid membrane solution at the existing 
temperature and pressure. 

Table 3 shows the values of the model parameters used in the first search. 
DzB was determined from the definition of A in Table 1 and given by 

A 
D:B = K,,cT 

Subsequently, values of the E’S which gave the same value for the 
experimental steady-state facilitation factors were plotted versus the value 
of K corresponding to the experimental mole fraction of the permeate as 
shown in Fig. 4. It was observed that as Keq increased, the variation in the 
values of E decreased. The goal was to have E remain constant for all five 
values of K plotted at that particular Kq For A = 25 this occurred at 
Keq = 4.0 X lo6 cm3/mol and resulted in E = 0.0186 when the experimental 
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248 LEIBER ET AL. 

model facilitation factors were the same. The values of D A B ,  k l ,  and k2 were 
computed using Eq. (29) and 

DAB = D L D A  (30) 

DAB 
k2 == 

The resulting D A B  = 6.58 X lo-', which is an order of magnitude smaller 
than Ward's (2) value. 

Next, values of A were varied, and the sets of parameters that gave the 
correct solution were found for each A. Table 4 shows the complete results 
of this search procedure. Figures 5 and 6 graphically show the infinite sets 
of parameters A, E ,  and Kq which will reproduce the experimental results. 
Of special interest is the data set at A = 100, Keg = 7.2 X lo6 cm3/mol, and 
E = 0.16. With this combination, D A B  = 1.46 X cm2/s, which is closest 
to the value reported by Ward (2). The values of k2 and k, are also very 
close to those found in the literature. Therefore, this is the best steady-state 
data set available for the concentration specified boundary conditions 
(Case I). 

The next step was to match transient data with an optimum set of 
parameters. Experimental transient data were available only for the case of 
YAo = 1.0 and are given in Table 5.  The transient data produced by the 
model were plotted with the experimental data and are shown in Fig. 7. 
Calculating the standard deviation of the experimental values from the 

TABLE 4 
Data Sets Satisfying Experimental Results Using the Concentration Specified Boundary 

Conditions 

A E K 

at YAo = 1.0 

25 0.0186 10.0 
30 0.03 10.5 
45 0.01 11.5 

100 0.16 18.0 
300 0.53 25.0 

Kes 
(cm3/moI) 

4.0 X lo6 
4.2 X lo6 
4.6 X lo6 
1.2 x 106 
1.0 x 107 

DAB 
(cm2/s) 

6.58 x 10-7  
7.51 x 10-7 
1.03 X 
1.46 X 
3.16 X 

kl 
(cm3/moI. s) 

1.53 x 105 
1.13 x 105 

6.45 x 104 

1.33 X lo4 
1.36 X lo4 

k2 
(S-9 

3.83 X 
2.71 X 
1.59 X 
9.87 x 10-3 
6.45 x 10-3 
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FIG. 5.  E vs A for Case I boundary conditions. 

1.2~107 I I I I I I I I I  I I I I I I H J  
1.1 x 107 / 4 

t / 

C 
0 
0 

1 - 
g 7 . 0 ~ 1 0 ~  
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4 . 0 ~  lo6 
I 1 1 I 1 l 1 1 1  1 1 1 1 1 1 1 1  
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10 

A 

FIG. 6. Keq vs A for Case I boundary conditions. 
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TABLE 5 
Experimental Transient Data ( I  7) at YAo = 1 .O for NO-Fe*+ System 

NA (diffusion) = 2.6 X mol/cm2 I s 

t T 
(dimensionless) 

F 
(dimensionless) 

3.34 
5.34 
7.34 
9.34 

11.34 
13.34 
15.34 
17.34 
19.34 

m 

6.86 
10.96 
15.07 
19.07 
23.28 
27.38 
31.45 
35.55 
39.70 

00 

2.1 x 10-9 
3.75 x 10-9 
4.46 x 10-9 
4.88 x 10-9 

5.30 x 10-9 
5.41 x 10-9 

5.64 x 10-9 
5.72 x 10-9 

5.11 X lo-' 

- 

0.808 
1.442 
1.715 
1.877 
1.965 
2.038 
2.08 1 

2.170 
2.200 

- 

2.5 , , , , 
1 8 1  , , I ,  , V !  1 '  

2.0 - 

- 
1.5 - 

F 

- - - -  model A = 2 5  
-.- 

1.0 F- 

--- 
0.5 - 

O . O i 1  1 I ' ' ' I ' ' A 

0 10 20 30 40 50 
7 

FIG. 7. Transient facilitation factors (model compared to experimental data for Case I 
boundary conditions). 
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TABLE 6 
Search Technique for A = 300 Using F l u  Boundary Conditions (Case 11) 

10 1.0 x 107 
20 1.0 x 107 
20 1.4 x 107 
20 1.6 x 10' 
30 1.2 x 107 
30 1.4 x 107 
40 1.4 x 107 

0.02 
0.2 
0.015 
0.OooI 
0.2 
0.05 
0.08 

4.5 
4.9 
6.0 
6.2 
5.8 
6.2 
6.3 

model-generated numbers resulted in choosing A = 1 0 0  as the best fit. 
Therefore, the best values of the unknown constants are: 

D:B = 0.0462, D A B  = 1.46 X lod6 cm2/s 

k ,  = 7.36 X lo4 cm3/mol. s, k2 = 9.87 X s-' 

and 

Keg = 7.2 X lo6 cm3/mol 

Both steady-state and transient procedures were repeated for the flux 
specified boundary conditions (Case 11). The method used to search for the 
theoretical data sets was different than the one used for Case 1. Since the 
Sherwood number is another parameter to vary, the search procedure was 
modified by first choosing a value for A. Various values of Sh were chosen, 
and the &-E combinations that gave the desired facilitation factors were 
sought. A graph of the resulting facilitation factor at Y,, = 0.2 was plotted 
versus Kq for each run at the value of E and Sh which gave the facilitation 
factor of 2.2 at YAo = 1.0. For A = 300, Table 6 shows the values 
generated by the model and graphed on Fig. 8. The line across the center at 
I; = 5.5 represents the infinite number of solution sets. Lines of constant Sh 
and constant E were approximated using the data points available. 

The solution set at K, = 1.2 X lo7 cm3/mol was estimated using Fig. 8. 
The estimated values of Sh = 22 and E = 0.1 were close, and one more run 
refined the set to E = 0.075. 

For a A = 25, the search procedure was to be repeated. The two data sets 
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7 .O I 1 I 

- 
6.5 - 
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This Lme - 

- 
- 
- 
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- Fall on 
This Lme - 

- 
- 
- 
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- - 

4 .O I I 1 I 
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Keq (cclmol) 

FIG. 8. Search technique for flux boundary conditions (Case 11) = 300. 

obtained occurred at Sh = 40, K,, = 4.0 X lo6 cm3/mol and E = 0.0015, 
and at Sh = 50, Keq = 4.0 X lo6 cm3/mol and E = 0.003. 

Since the experimental transient data are scarce, the three solution sets 
shown in Table 7 were plotted with the transient laboratory results and a 
selection of the best fit was made from that. Figure 9 shows this transient 
match up. It appears that the Sherwood number has a very small effect at 
lower values of A. The most significant effect is on the reaction equilibrium 
data; as the Sherwood number increases, Keq decreases, and the boundary 
conditions approach those in Case I. 

It should be pointed out that Ward (2) estimated the value of DAB at 
2 X cm2/s. Since the best values of DAB determined by using this model 
gave values close to this one, it is assumed that the choice was reasonable. 
The values of k,,  k2, and Keg found in the literature range over several 
orders of magnitude and suggest that these values are not well estab- 
lished. 

The usefulness of the permeate flux boundary condition can be shown by 
applying the sum of the resistances technique. For the flux condition (Case 
11) the total resistance to mass transport is given by 

107 

2 L  
k FDA 

R =-+ -  (33) 
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0.5 

F :: 1 .o 

- 
- 
- , I 

Sh=40 A =25 

_.-.- Sh=50 A =25 

- _----_- 

- 

where the first term represents the combined resistances through the 
interfacial boundary layers on both sides of the membrane, and the second 
term is the total resistance across the membrane itself. For high initial 
concentrations of permeate in the bulk feed, the contribution of the first 
term is less than one-quarter of the total resistance (17% for YAo = 1.0). 
For low initial concentrations the contribution is as much as one-third of 
the total. Therefore, neglecting this boundary layer will have an effect on 
the solution. 

DISCUSSION 

The mathematical model presented here, which includes electric field 
effects, produces favorable solutions to the one-dimensional set of partial 
differential equations governing a typical liquid membrane system. Evalu- 
ation of the model was accomplished and its validity was confirmed. The 
use of the flux boundary condition (Case 11) is more exact, but requires 
more computing time. 
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Regardless of which boundary condition was implemented, it was found 
that the facilitation factors vary more with changes in initial permeate 
concentration as the reaction equilibrium constant decreases. Therefore, the 
faster the forward reaction of the permeate is with the carrier, the higher the 
facilitation factor. The variation of A and Keq that gives the same solution 
is nearly linear with respect to the logarithm of A. Also, the logarithmic 
changes that affect A cause the logarithm of E to change in a nearly linear 
fashion to produce the same solution. The mere fact that many combina- 
tions of the variables DAB, k l ,  and k2 will give the same solution places 
emphasis on determining these constants experimentally. 

For the flux boundary condition (Case 11), it was found that increases in 
the Sherwood number will increase facilitation, which can be justified by 
noting that as Sh approaches infinity, the flux boundary condition becomes 
the concentration boundary condition. As Sh increases, the E required to 
get the same solution also increases; however, E does not increase linearly 
with Sh. There seems to be a limiting value of Sh near 10 where the value of 
E becomes nearly zero and the solution procedure no longer is valid. This 
can be explained by assuming that at this limit the resistance to mass 
transfer becomes infinite. 

This model can be expanded. The assumption that DAB = DB can be 
omitted. If neither is known, each can be sought, or if one is known, the 
other can be found. Variations in membrane thickness and membrane 
shape can also be researched using this model. Ionically dissociated liquids 
can be studied without neglecting the electrical potentials developed. The 
mathematical model can also be combined with other models to give 
electrical effects. For instance, competitive transport [Niiya (l8)I and two- 
dimensional flows, as in cylindrical continuous flow systems, are two 
possibilities for further study. 
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